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1. Overview 
 
This memo describes the development of a system for assigning a score to laboratory buildings 
that reflects its energy performance relative to its peers. We largely follow the methodology 
used by the U.S. Environmental Protection Agency (EPA) to develop the ENERGY STAR Score [1] 
but deviate when their method is not applicable, or when our data sources prevent us from 
doing so. Section 2 describes the datasets used for the analysis. Section 3 discusses the 
development of the linear regression model relating laboratory characteristics to energy 
performance. Section 4 details the use of the regression model's prediction for computing a 
score. Lastly, Section 5 discusses future development and refinement opportunities for the 
scoring system. This work was carried out by Lawrence Berkeley National Laboratory (LBNL) and 
the International Institute for Sustainable Laboratories (I2SL), but we also received valuable 
feedback from several stakeholders and members of the I2SL Labs2Zero Energy Score Technical 
Advisory Committee (TAC). 
 
 
 

2. Data Sources 
 
The primary source of data for this analysis was the dataset underlying the Laboratory 
Benchmarking Tool (LBT) [2], which is the largest known collection of energy-related 
information on laboratory buildings. We utilized only the subset of the dataset whose data has 
been lightly quality checked1 by LBNL after being entered by users of the tool, leaving us with 
data for 990 laboratory buildings. For each building, the database contains over 100 data fields 
describing various characteristics relating to the laboratory's size, location, usage patterns, 
installed systems, and energy consumption. See the full list of LBT data fields and their 
descriptions [3] for more information. We carefully inspected the data and removed any data 

 
1 Quality check procedures cannot identify all forms of user entry error within the LBT. 



deemed to be unreliable (e.g., physically unrealistic) or otherwise not representative of 
laboratories in general (e.g., abnormally high or low values relative to other buildings). 
 
We augmented the LBT dataset with weather data from Degree Days.net [4], which compiles 
temperature data from thousands of weather stations worldwide and calculates heating and 
cooling degree days (HDD and CDD) for a given location, time period, and base temperature. 
We downloaded HDD and CDD (both with 65F base temperature) data for each building in the 
LBT dataset using its location and the year in which energy consumption was measured. While 
the original LBT dataset includes data on building location (i.e., a proxy for climate) and the year 
of energy data measurement2 (i.e., along with climate, a proxy for weather), we believed HDD 
and CDD to be more direct measurements of the meteorological conditions that would impact a 
building's energy consumption. 
 
The combined dataset includes laboratory buildings with a variety of locations, use types, ages, 
operating characteristics, and levels of energy consumption. Many of the categorical fields in 
the dataset have unequal distribution of types. For example, Figure 1 shows that while the 
dataset contains buildings in 16 different climate zones, the large majority of them are in just 4 
zones. While there are very few buildings with unknown climate zone, other categorical fields 
considered optional for setting up a building profile (fewer than 20 fields are required) have 
significant portions of the dataset with either unknown values, or with values of limited utility 
(e.g., other or combination). Fields that are not required tend to have significantly more missing 
data, including some fields that are now required but were previously optional. 
 

 
2 Analysis assumes user-entered data for a given reporting year to be representative of a standard calendar year. 



 
Figure 1: Histogram of climate zones in the dataset, including only buildings with data for the 

performance metric. 
 
For numerical fields, many distributions are similarly unequal, and depending on the field, many 
buildings might not have data available. For example, Figure 2 shows a few buildings built 
before 1900 but 25% of buildings built after 2003, and that data for this field is available for 
only 650 of the 794 buildings with data for the performance metric. 
 



 
Figure 2: Histogram of year built in the dataset, including only buildings with data for year built 

and the performance metric. 
 
 
 

3. Fitting the Model 
 
In order to develop a scoring system, we first constructed a model that estimates the typical 
energy consumption for a laboratory with a given set of characteristics. To fit this model, we 
assumed that the LBT dataset was a representative sample of the wider population of 
laboratory buildings for which the scoring system will be applied. It should be noted that 
without a comprehensive dataset containing information on all laboratory buildings in 
existence, we are unable to confirm whether this assumption of representativeness is true. 
However, since the LBT dataset is the largest known dataset of energy-related laboratory 
information, and since it appears to include buildings with a wide variety of types, locations, 
system characteristics, and usage patterns, we are confident this dataset can be used to derive 
a useful and trustworthy energy consumption model. 
 



The primary role of the model is to predict the performance metric upon which laboratories will 
be scored. We carefully considered several metrics, but narrowed the list down to two final 
candidates: site energy use intensity (EUI) and source EUI. Both candidate metrics are a 
measure of energy consumption that is normalized by the size (i.e., gross floor area) of the 
building, in order to avoid penalizing or rewarding buildings based on their size (i.e., an inherent 
property of the building that generally cannot be changed in order to improve performance). 
Site EUI measures the un-weighted sum of energy consumption from all fuels (e.g., electricity, 
natural gas, district steam). Source EUI also measures consumption from all fuels, but weights 
the consumption from each fuel according to the amount of primary energy used to generate 
and transport the energy to the building. While site EUI is more intuitive for building owners 
and operators (e.g., it can be read directly from utility bills) and can tend to encourage 
electrification of fossil-fuel systems, source EUI is more indicative of scope 1 and 2 greenhouse 
gas (GHG) emissions and is used for the ENERGY STAR Score (thereby providing consistency 
across building types for owners of portfolios of buildings). Thus, we selected source EUI as the 
performance metric upon which buildings will be scored. We removed the 5% of buildings 
without source EUI data from the dataset, and an additional 15% of buildings whose source EUI 
was estimated (not measured). 
 
We next aimed to identify which data fields would be used as predictors in the model. With 
input from the Energy Score TAC, out of the more than 100 fields in the LBT dataset, we 
selected roughly 30 fields that were likely to have an impact on energy performance and that 
we considered to be a functional requirement for operating the laboratory (as opposed to the 
means by which those functional requirements are achieved). For example, we considered the 
number of occupants to be a functional requirement, but considered heating and cooling 
system types to be the means by which those occupants are served conditioned air (and thus 
not a functional requirement). 
 
We further narrowed down the list of functional requirement fields by considering a 
combination of data quantity, data quality, and relationship to other fields. For example: We 
excluded vivarium area because despite nearly all buildings having data in this field, nearly all 
buildings had the same value (zero). We excluded total fume hood length from consideration 
because only 42% of buildings have data and because it is closely related to the number of 
ducted fume hoods (for which 73% of buildings have data). We excluded location-related fields 
(climate zone, latitude and longitude, etc.) and the year of energy measurement because 
despite high data availability, their effect on energy consumption is more directly explained by 
HDD and CDD. The resulting list of 14 candidate fields is as follows: 

 Organization Type (e.g., academic, government, pharmaceutical) 
 Predominant Lab Type (e.g., basic research, teaching, manufacturing) 
 Predominant Lab Use (e.g., chemical, biological, physical) 
 Year Built 
 Total Occupant Density 
 Occupied Hours / Week 
 Ducted Fume Hood Density (i.e., number of hoods per sqft of lab area)  



 Laboratory Occupied Minimum Air Change Rate 
 Laboratory Area Ratio (i.e., proportion of gross floor area that is lab space) 
 Biological Lab Area (i.e., proportion of lab space that is a biological lab) 
 Chemistry Lab Area 
 Physics/Engineering Lab Area 
 HDD 
 CDD 

 
Next, we investigated correlations between each of the remaining candidate fields (individually) 
and the performance metric. Namely, for each field, we fit a linear regression model with that 
candidate field as the only predictor of source EUI and checked for statistical significance of the 
model coefficients (with a p-value threshold of 0.05). For numerical fields, we experimented 
with different transformations (e.g., logarithmic, piecewise linear), scaling and shifting, and 
with treating the numerical field as a categorical field by grouping the values into ranges (e.g., 
lab area < 0.2, 0.2-0.4, 0.4-0.6, etc.). For categorical fields, we experimented with several 
potential groupings of values when fitting the model. For example, Figure 3 shows a boxplot of 
source EUI for each of the lab types in the dataset. We experimented with combining different 
lab types into groups based on what makes physical sense and based on the similarity of their 
source EUI distributions. In general, categorical fields had to be grouped into relatively broad 
categories (e.g., roughly 3 or 4 values) before the coefficients of the model became statistically 
significant. These checks for individual significance narrowed the list of candidate fields down 
to the following 9 fields: 

 Organization Type (regrouped from 13 values to 3: Academic, Government, and Other) 
 Lab Type (regrouped from 9 values to 3: Manufacturing, Teaching, and Other) 
 Lab Use (regrouped from 8 values to 2: Bio/Chem and Other) 
 Occupied Hours / Week 
 Occupied Minimum Air Change Rate 
 Lab Area Ratio 
 Biological lab area 
 Physics/Engineering lab area 
 CDD 

When regrouping categorical fields, the “Other” value represents all values other than those 
listed, including buildings that are missing data, buildings with an unlisted value (i.e., buildings 
whose value is not among the list of options), and buildings whose value is a combination of 
values. For organization type, the “Other” category contains primarily corporate labs, but also 
some healthcare, unknown, unlisted, and combined types. For lab type, the “Other” category is 
predominantly research and development. For lab use, the “Other” category is mostly 
physics/engineering labs, but also some unlisted and combined types. 
 



 
Figure 3: Boxplot of source EUI (kBtu/sqft) for each lab type, with the number of buildings of 

each type shown in parentheses. 
 
With the short list of 9 candidate fields, each of which shows a statistically significant 
relationship to the performance metric, we next experimented with fitting linear regression 
models with various combinations of fields as predictors of source EUI. In some cases, multiple 
fields showed multicollinearity when included together in the same model (e.g., the primary lab 
use type is highly correlated with the proportion of lab area that is a biological lab), so we 
excluded that combination of fields from consideration as the model. We searched for the 
combination of fields that included as many fields as possible while avoiding multicollinearity, 
and arrived at a linear regression model that predicts source EUI (kBtu/sqft) with the following 
coefficients: 

 Intercept: 290.5 kBtu/sqft 
 Occupied Hours: 0.4473 (kBtu/sqft) / (hours/week) 
 Lab Area Ratio: 2.979 (kBtu/sqft) / % 
 CDD: 42.78 (kBtu/sqft) / (1000 degree-days) 
 Lab Type = Manufacturing: +138.4 kBtu/sqft 
 Lab Type = Teaching: -83.04 kBtu/sqft 
 Lab Use = Bio/Chem: +74.50 kBtu/sqft 

 



As an example calculation, consider a hypothetical laboratory building that is occupied 80 
hours/week, has 40% of its gross floor used as a teaching lab that is not for biological/chemical 
research, and is operating in a location and during a year with 5000 CDD. For this building, the 
regression model predicts a source EUI of 290.5 + (0.4473 x 80) + (2.979 x 40) + (42.78 x 
(5000/1000)) - 83.04 = 576.3 kBtu/sqft.  
 
This model was fit to the 748 buildings in the dataset that had data available for all the 
numerical fields in the model. All model coefficients are statistically significant with p-value <= 
0.028. The model explains only 15% of the variation in source EUI, but explains 87% of the 
variation in source energy. 
 
Note that this regression model contains the combination of functional requirement fields that 
best predicts the source EUIs in the LBT dataset. While the LBT is the largest known collection 
of laboratory data, there is no guarantee it is representative of all laboratory buildings in 
existence. Similarly, it may be representative of labs of some types, or in some locations, etc., 
but might not contain data from enough labs of other types or in other locations. There are 
many reasons why fields that intuitively seem like they have an impact on source EUI might not 
be included in the model. For example, if many of the buildings in the dataset are missing data 
for a particular field, or if all buildings have data but almost all of them have the same value, 
that field might not show a statistically significant relationship to source EUI. This does not 
mean that field does not affect source EUI, it just means the model cannot discern its effect. 
Similarly, multiple fields can exhibit multicollinearity that makes the model unable to 
distinguish their effects. For example, hypothetically, if all the labs in one location were of one 
use type and all the labs in another location were of another use type (i.e., location and use 
type are highly correlated), then the model might be able to quantify the combined effect of 
both fields, but unable to separate the effect of location from the effect of use type. The LBT 
contains many fields that serve as proxies of other fields that more directly affect source EUI. 
For example, in reality, energy consumption is driven by the particular equipment used in a lab, 
but the lab’s use type typically indicates which equipment is used, so the model might detect 
the effect of the proxy, but not the underlying fields. This does not imply those underlying fields 
have no effect. 
 
 

4. Computing a Score 
 
Using the regression model developed in Section 3, we followed the EPA's methodology [1] for 
computing a score. For each building in the dataset, we computed its EUI ratio as the measured 
source EUI divided by the source EUI predicted by the regression model using that building's 
fields as input to the model. The resulting ratios represent the proportion of model-predicted 
EUI that the building actually used (i.e., a ratio of 0.75 means the building used 75% as much 
energy as the model predicts for a building with the same occupancy hours, lab area ratio, CDD, 
etc.). We fit a gamma distribution to these ratios (see Figure 4), then used the fitted gamma 
distribution to generate a lookup table (see Table 1) that maps each range of EUI ratios to the 



corresponding energy score. The score represents the percentage of buildings performing 
worse than a given building (i.e., a score of 100 indicates highest performance and a score of 1 
indicates lowest performance). For example, consider the example building from Section 3 with 
a model-predicted source EUI of 576.3 kBtu/sqft, and assume that this building actually used 
500 kBtu/sqft. The EUI ratio is computed as 500 / 576.3 = 0.8676. According to Table 1, this 
ratio corresponds to a score of 58. 
 

 
Figure 4: Cumulative distribution function for EUI ratio. The blue circles represent the ratios 

computed from the dataset. The red line represents the gamma distribution fitted to the 
computed ratios. 

 
Score EUI Ratio Min EUI Ratio Max 
100 0.0000 0.2876 
99 0.2876 0.3365 
98 0.3365 0.3708 
97 0.3708 0.3984 
96 0.3984 0.4220 
95 0.4220 0.4429 
94 0.4429 0.4618 
93 0.4618 0.4794 



92 0.4794 0.4957 
91 0.4957 0.5111 
90 0.5111 0.5258 
89 0.5258 0.5398 
88 0.5398 0.5532 
87 0.5532 0.5662 
86 0.5662 0.5788 
85 0.5788 0.5910 
84 0.5910 0.6029 
83 0.6029 0.6145 
82 0.6145 0.6259 
81 0.6259 0.6371 
80 0.6371 0.6481 
79 0.6481 0.6589 
78 0.6589 0.6695 
77 0.6695 0.6800 
76 0.6800 0.6904 
75 0.6904 0.7007 
74 0.7007 0.7108 
73 0.7108 0.7209 
72 0.7209 0.7310 
71 0.7310 0.7409 
70 0.7409 0.7508 
69 0.7508 0.7607 
68 0.7607 0.7705 
67 0.7705 0.7803 
66 0.7803 0.7900 
65 0.7900 0.7998 
64 0.7998 0.8095 
63 0.8095 0.8193 
62 0.8193 0.8290 
61 0.8290 0.8387 
60 0.8387 0.8485 
59 0.8485 0.8583 
58 0.8583 0.8681 
57 0.8681 0.8779 
56 0.8779 0.8878 
55 0.8878 0.8977 
54 0.8977 0.9077 
53 0.9077 0.9177 
52 0.9177 0.9278 
51 0.9278 0.9380 



50 0.9380 0.9483 
49 0.9483 0.9586 
48 0.9586 0.9690 
47 0.9690 0.9795 
46 0.9795 0.9902 
45 0.9902 1.0009 
44 1.0009 1.0117 
43 1.0117 1.0227 
42 1.0227 1.0339 
41 1.0339 1.0451 
40 1.0451 1.0566 
39 1.0566 1.0682 
38 1.0682 1.0800 
37 1.0800 1.0919 
36 1.0919 1.1041 
35 1.1041 1.1165 
34 1.1165 1.1292 
33 1.1292 1.1420 
32 1.1420 1.1552 
31 1.1552 1.1687 
30 1.1687 1.1824 
29 1.1824 1.1965 
28 1.1965 1.2110 
27 1.2110 1.2258 
26 1.2258 1.2411 
25 1.2411 1.2569 
24 1.2569 1.2731 
23 1.2731 1.2899 
22 1.2899 1.3073 
21 1.3073 1.3253 
20 1.3253 1.3440 
19 1.3440 1.3636 
18 1.3636 1.3840 
17 1.3840 1.4055 
16 1.4055 1.4281 
15 1.4281 1.4519 
14 1.4519 1.4772 
13 1.4772 1.5043 
12 1.5043 1.5333 
11 1.5333 1.5647 
10 1.5647 1.5989 
9 1.5989 1.6366 



8 1.6366 1.6788 
7 1.6788 1.7267 
6 1.7267 1.7824 
5 1.7824 1.8493 
4 1.8493 1.9337 
3 1.9337 2.0497 
2 2.0497 2.2412 
1 2.2412 inf 

Table 1: Lookup table mapping each range of EUI ratios to the corresponding energy score. 
 
 
 

5. Next Steps 
 
We are confident in the utility of this regression model and scoring system, but acknowledge 
that further scrutiny and refinement may be needed to achieve stakeholder buy-in and 
widespread adoption and use of the score. The next phase of our analysis will include additional 
review of the score computed for each of the buildings in the LBT dataset. We will check for 
indications that the score is treating any particular types of labs unfairly (e.g., whether labs of 
particular types or in particular locations tend to score abnormally higher or lower than their 
peers). If we identify any characteristics of labs that tend to result in inconsistent or non-
intuitive scores, we will consider re-developing the model with those labs excluded from the 
dataset. For example, there may be cases where the dataset does not include sufficient 
coverage of certain lab types, uses, locations, etc., and we may conclude the score should not 
be used for those labs. If we identify areas of the database with especially low coverage, we 
may recommend further data collection that targets those areas. 
 
We will also consider how our scoring system may be improved through the use of a physics-
based simulation model of a laboratory building (we have confirmed that an EnergyPlus model 
for laboratories is freely available from the Department of Energy). One potential use of a 
simulation model could be to use it to estimate the effect of particular fields that are included 
in the regression model (e.g., occupancy hours) on source EUI, then compare the magnitude of 
the resulting effect to the corresponding coefficient in our regression model (i.e., using the 
simulation model to independently derive a coefficient and comparing it to the coefficient 
learned from the LBT dataset). Another potential use could be to use the simulation model to 
derive coefficients for fields that were not included in the regression model but that intuitively 
should perhaps be included in the model (e.g., HDD), then augment the regression model with 
the coefficient derived from the simulation model. 
 
Lastly, we will collect data from a handful of pilot laboratory sites that have additional data 
available than what is available in the LBT database. We will compute scores for those pilot labs 
then compare the score to the expected level of performance of that laboratory based on the 



more-detailed data (i.e., we will check our computed scores for some pilot sites known to be 
poor- or well-performing and make sure the score is consistent). 
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7. Appendix: Pilot Building Results 
 
For initial testing of the score, two federal laboratory buildings were selected to evaluate their 
energy performance utilizing the above-described score methodology. These facilities were 
selected to provide insights on how well the score itself performed relative to facilities for 
which there was familiarity and a strong understanding of their internal systems and 
operations. Because of this consideration, it was determined that one building each from 
LBNL’s Berkeley campus and NREL’s Golden campus would serve as a strong starting point for 
piloting the score, considering that LBNL and NREL are both intimately involved with research 
around laboratory energy performance. Further criteria to select specific buildings on each 
campus were as follows: 
 

 Reliable building-level meter data 
 LBT required fields known 
 Recent energy audit or energy projects (planned or completed) 
 Confidence in lab space breakdown by type 

 
First Test Building – LBNL’s Building 84 
 



Building 84 houses office and lab space for the 
Biosciences Area and the Earth and Environmental 
Sciences Area for Berkeley Lab. Genomic scientists 
work to better understand complex sequence motifs 
that control RNA transcription, DNA replication, and 
chromosome structure. On the Earth and 
Environmental Science side, climate scientists work 
on novel forms of climate modeling and pioneering 
work on carbon cycles. Built in 1997, the building still 
has original controls with limited capabilities, 
constant, 100% outside-air volume distribution and 
reheat/cooling coils within spaces for temperature control. Lighting is primarily T8 with some 
LED retrofits throughout. 
 

 
 
The EUI regression resulted in a predicted EUI of 472.2 kBtu/sqft. Percent lab area, Bio/Chem 
classification, and overall occupancy hours were the biggest contributors to the predicted EUI. 
 



 
 

Since several years of data were readily available, the score was calculated over several years, 
including pre- and post-pandemic operations, as shown on the above chart. The score itself 
varied from 36 in 2017 to a peak of 66 during the pandemic. 

 

 
Adjusting for occupancy hours for the pandemic period resulted in a slight leveling of the score, 
but not sufficient to fully normalize for extreme changes in occupancy present during the 
pandemic. 
 
Due to available audit data, we were also able to model out the score assuming 
implementation of ECM and capital upgrades available in their most recent energy audit report. 
These hypothetical scores are shown in the graphic below: 
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Second Test Building – NREL’s Field Test Laboratory Building (FTLB) 
 
The Field Test Laboratory Building is an 
amalgam of 40+ smaller laboratories mostly 
within the categories of chemistry and biology, 
with a primary focus on alternative and 
emerging fuel technologies. Built in 1982, the 
building systems are comprised of primary air 
handlers feeding fan coil units within spaces, 
with chilled water and hot water cooling and 
heating, respectively. Lighting is primarily T8 
with some LED retrofits throughout. 
 



  

 
 
The EUI regression resulted in a predicted EUI of 519.2 kBtu/sqft. Percent lab area, CDD, and 
Bio/Chem classification were the biggest contributors to the predicted EUI. This yielded a pilot 
energy score of 55 for FTLB. 
 
Due to available audit data, we were also able to model out the score assuming 
implementation of ECM and capital upgrades available in their most recent energy audit report. 
These hypothetical scores are shown in the graphic below: 
 

 
 
Overall, the scores derived for these pilot facilities were in line with the expectations of facility 
energy management staff.  Caveats may be introduced for facilities with low occupancy hours 
(especially for the atypical occupancy of the pandemic period) as a result of the testing at 
Building 84.   


